Bloom Filter Variations for Enhanced Log Search in Ethereum

George Drakoulis, Andreas Sendros, Periklis Kostamis, Pavlos Efraimidis

#Blockchain #Data Structures

Electrical and Computer Engineering Dept., Democritus University of Thrace

Problem Statement

Ethereum's exponential log growth creates computational bottlenecks in data retrieval.

- Current Bloom Filters in Ethereum [1, 2] produce false positives unnecessary block scans.
- Standard implementation doesn't exploit Ethereum-specific log characteristics.
- Need for optimized data structures [3] as blockchain scales.

Background & Motivation

What are Bloom Filters [4]?

Probabilistic data structure for fast set membership testing Use k hash functions to map elements to bit array positions

- Space-efficient: Much smaller than storing complete sets.
- Key property: No false negatives, but allows false positives.
- Uses k independent hash functions h₁, h₂, ...
- Bit array of size m, initially all bits set to 0.
- False Positive Probability:
- P(false positive) \approx (1 e^(-kn/m))^k

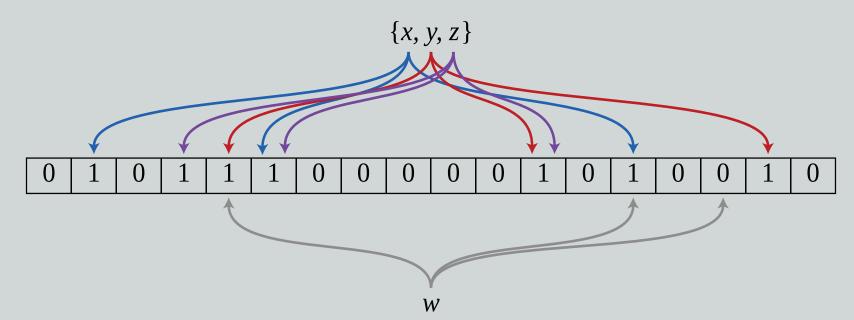


Figure 1. Bloom Filter Hash Function Mapping [5]

Bloom Filters in Ethereum

- 2048-bit filters in block headers summarize log addresses and topics.
- Hash functions, k = 3.
- Enable fast membership testing to filter irrelevant blocks.
- Reduce computational overhead by avoiding full block scans.
- Current limitation: False positives still require additional verification.

Bloom Filter Variations [6]

- One Hashing BFs: Use single hash function, reduced computational overhead but increased false positives [7].
 Ultra-Fast BFs: Leverage SIMD parallelization, faster operations but require specialized hardware [8].
- Compressed BFs: Optimize storage through compression, reduced space but additional computational overhead.
- Elastic BFs: Dynamically adjust filter structure, lower false positives but require more storage/processing.

Two Types of False Positives Identified

References

- Compressed False Positives: Inherent to Bloom Filter probabilistic nature.
- Justified False Positives: When log elements exist separately from different.

Dataset & Experimental Setup

Block Period	Total Logs	% Logs with 1 Topic	% Logs with 2 Topics	% Logs with 3 Topics	% Logs with 4 Topics
All Blocks	4,207,764,482	12.1%	12.6%	62.7%	13%
2019	247,999,603	10.9%	12.3%	66.1%	14%
2024	843,504,299	13.3%	12.6%	65.2%	8.9%
Our Dataset	1000	11.3%	14.7%	67.1%	6.4%

Table I: General Distribution of Topics in the Ethereum Blockchain

Compressed DTI

Dataset

- 1,000 logs from Ethereum blocks.
- Representative of current log topic distribution.
- Logs categorized by number of topics (1-4).

Infrastructure

- Intel i9-13900K, 128GB RAM, 2TB M.2 storage
- Python 3.6 with eth_bloom, web3, Crypto-Hash libraries Data accessed via Infura.

computational cost

Proposed Variations

techniques

Proposed Variations

- DTI (Different Topic Insertion): Combines address+topics as single elements to reduce justified false positives.
- Compressed Bloom Filter: Increases filter size, reduces hash functions, enables efficient compression.
- Compressed DTI: Merges both techniques for optimal false positive reduction.

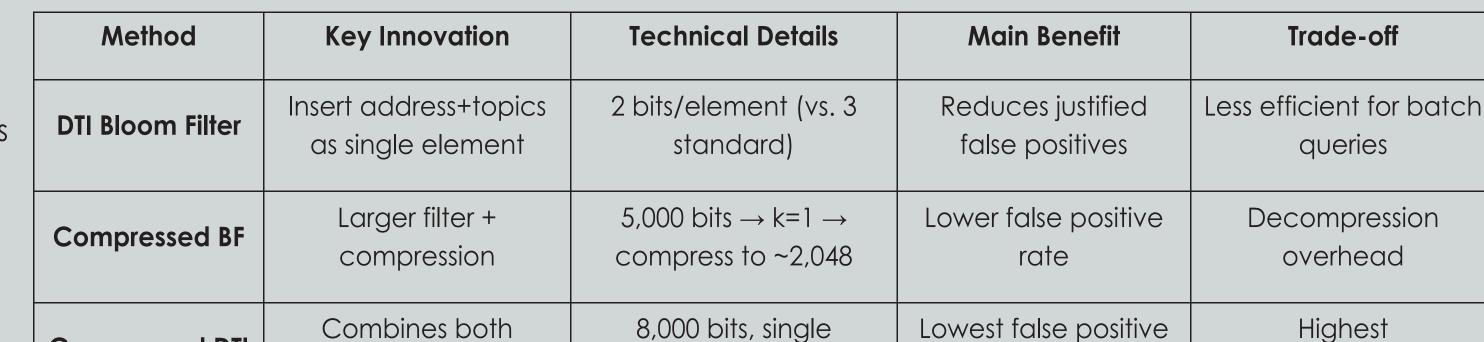


Table II: Overview of the three main Bloom Filter variations

element, k=1

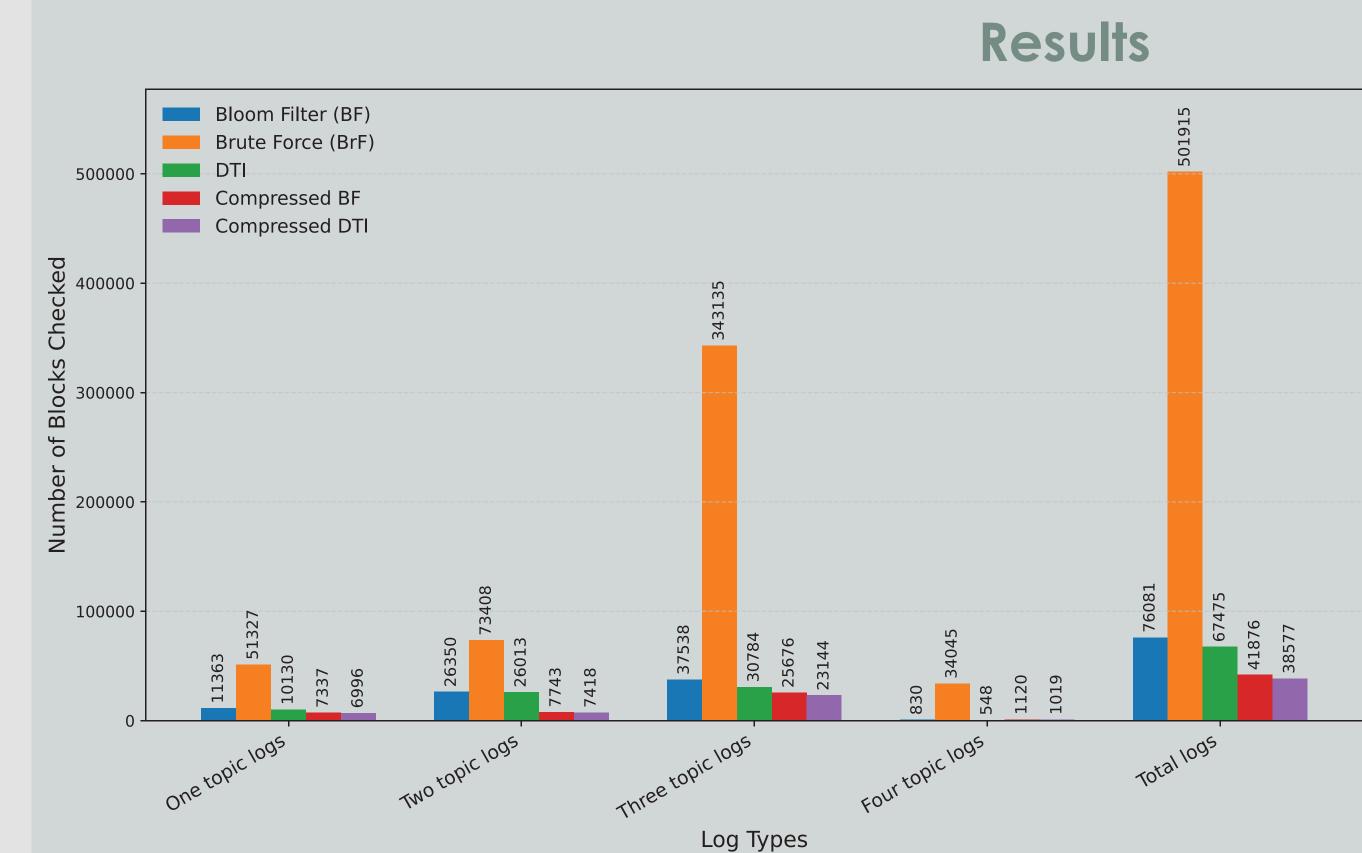


Figure 2. Comparison of Blocks Checked Across Bloom Filter Variations

Evaluation Metrics

• Number of Blocks Checked per query.

rate

- Computational Overhead.
- False Positive Rate.

False Positive Reduction:

- DTI method effectively eliminate justified false positives.
- Compressed method achieve lower false positive rates through optimized parameters.
- Combined approaches (Compressed + DTI) provide maximum benefit.

Trade-offs:

- DTI: Better for specific queries, less efficient for batch operations.
- Compressed: Require decompression overhead but maintain 2048-bit compatibility.
 Transaction bash inclusion: Eliminates all justine
- Transaction hash inclusion: Eliminates all justified false positives at computational cost.

Conclusions

All proposed methods outperform Ethereum's default BF in false positive reduction.

- DTI: Simple and effective, best for targeted queries.
- Compressed BF: Balanced improvement, slight overhead.
- Compressed DTI: Lowest false positives, but requires decompression.

Future Directions

- Testing in private Ethereum networks for real-world validation.
- Advanced compression techniques exploration and untested DTI combinations.
- Integration with existing Ethereum client implementations.

[1] G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," Ethereum Project Yellow Paper, 2014.

[2] V. Buterin et al., "A next-generation smart contract and decentralized application platform," white paper, vol. 3, no. 37, pp. 2–1, 2014.

[3] P. Kostamis, A. Sendros, and P. S. Efraimidis, "Data management in ethereum dapps: A cost and performance analysis," Future Generation Computer Systems, vol. 153, pp. 193–205, 2024

[4] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors," Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] "Bloom Filter," Wikipedia Commons, Available: https://upload.wikimedia.org/wikipedia/commons/a/ac/Bloom_filter.svg

[6] L. Luo, D. Guo, R. T. Ma, O. Rottenstreich, and X. Luo, "Optimizing bloom filter: Challenges, solutions, and comparisons," IEEE Communi- cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2018.

[7] J. Lu, T. Yang, Y. Wang, H. Dai, L. Jin, H. Song, and B. Liu, "One-hashing bloom filter," in 2015 IEEE 23rd international symposium on quality of service (IWQoS). IEEE, 2015, pp. 289–298.

[8] J. Lu, Y. Wan, Y. Li, C. Zhang, H. Dai, Y. Wang, G. Zhang, and B. Liu, "Ultra-fast bloom filters using simd techniques," IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 4, pp. 953–964, 2018.

euclid.ee.duth.gr

